summaryrefslogtreecommitdiff
path: root/plugins/opengl/src/matrix.cpp
blob: 656afefae037c58c515c0e9a4e49b864cbbd8ced (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*
 * Copyright © 2008 Danny Baumann
 *
 * Permission to use, copy, modify, distribute, and sell this software
 * and its documentation for any purpose is hereby granted without
 * fee, provided that the above copyright notice appear in all copies
 * and that both that copyright notice and this permission notice
 * appear in supporting documentation, and that the name of
 * Dennis Kasprzyk not be used in advertising or publicity pertaining to
 * distribution of the software without specific, written prior permission.
 * Dennis Kasprzyk makes no representations about the suitability of this
 * software for any purpose. It is provided "as is" without express or
 * implied warranty.
 *
 * DENNIS KASPRZYK DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
 * NO EVENT SHALL DENNIS KASPRZYK BE LIABLE FOR ANY SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
 * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
 * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *
 * Authors: Danny Baumann <maniac@compiz-fusion.org>
 */

/*
 * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * From Mesa 3-D graphics library.
 */

#include <compiz.h>
#include <string.h>
#include <math.h>
#include <core/core.h>
#include <opengl/matrix.h>

/**
 * Identity matrix.
 */
static const float identity[16] = {
    1.0, 0.0, 0.0, 0.0,
    0.0, 1.0, 0.0, 0.0,
    0.0, 0.0, 1.0, 0.0,
    0.0, 0.0, 0.0, 1.0
};

#define A(row, col) a[(col << 2) + row]
#define B(row, col) b[(col << 2) + row]
#define P(row, col) product[(col << 2) + row]

/**
 * Perform a full 4x4 matrix multiplication.
 *
 * \param a matrix.
 * \param b matrix.
 * \param product will receive the product of \p a and \p b.
 *
 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
 *
 * \note KW: 4*16 = 64 multiplications
 *
 * \author This \c matmul was contributed by Thomas Malik
 */
static void
matmul4 (float       *product,
	 const float *a,
	 const float *b)
{
    int i;

    for (i = 0; i < 4; i++)
    {
	const float ai0 = A(i,0), ai1 = A(i,1), ai2 = A(i,2), ai3 = A(i,3);

	P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
	P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
	P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
	P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
    }
}

GLMatrix::GLMatrix ()
{
    memcpy (m, identity, sizeof (m));
}

GLMatrix::GLMatrix (const float *mat)
{
    memcpy (m, mat, sizeof (m));
}

void
GLMatrix::reset ()
{
    memcpy (m, identity, sizeof (m));
}

const float *
GLMatrix::getMatrix () const
{
    return m;
}

GLMatrix&
GLMatrix::operator*= (const GLMatrix& rhs)
{
    *this = *this * rhs;

    return *this;
}

GLMatrix
operator* (const GLMatrix& lhs,
	   const GLMatrix& rhs)
{
    GLMatrix result;

    matmul4 (result.m, lhs.m, rhs.m);

    return result;
}

GLVector
operator* (const GLMatrix& lhs,
	   const GLVector& rhs)
{
    GLVector  result;
    const float *a = lhs.m;
    int         i;

    for (i = 0; i < 4; i++)
    {
	result[i] = A(i,0) * rhs[0] + A(i,1) * rhs[1] +
	            A(i,2) * rhs[2] + A(i,3) * rhs[3];
    }

    return result;
}

#undef A
#undef B
#undef P

/**
 * Generate a 4x4 transformation matrix from glRotate parameters, and
 * post-multiply the input matrix by it.
 *
 * \author
 * This function was contributed by Erich Boleyn (erich@uruk.org).
 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
 */
void
GLMatrix::rotate (const float angle,
		    const float xRot,
		    const float yRot,
		    const float zRot)
{
    float x = xRot, y = yRot, z = zRot;
    float xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
    float matrix[16];
    Bool  optimized;

    s = (float) sin (angle * DEG2RAD);
    c = (float) cos (angle * DEG2RAD);

    memcpy (matrix, identity, sizeof (matrix));
    optimized = FALSE;

#define M(row, col)  matrix[col * 4 + row]

    if (x == 0.0f)
    {
	if (y == 0.0f)
	{
	    if (z != 0.0f)
	    {
		optimized = TRUE;
		/* rotate only around z-axis */
		M(0,0) = c;
		M(1,1) = c;
		if (z < 0.0f)
		{
		    M(0,1) = s;
		    M(1,0) = -s;
		}
		else
		{
		    M(0,1) = -s;
		    M(1,0) = s;
		}
	    }
	}
	else if (z == 0.0f)
	{
	    optimized = TRUE;
	    /* rotate only around y-axis */
	    M(0,0) = c;
	    M(2,2) = c;
	    if (y < 0.0f)
	    {
		M(0,2) = -s;
		M(2,0) = s;
	    }
	    else
	    {
		M(0,2) = s;
		M(2,0) = -s;
	    }
	}
    }
    else if (y == 0.0f)
    {
	if (z == 0.0f)
	{
	    optimized = TRUE;
	    /* rotate only around x-axis */
	    M(1,1) = c;
	    M(2,2) = c;
	    if (x < 0.0f)
	    {
		M(1,2) = s;
		M(2,1) = -s;
	    }
	    else
	    {
		M(1,2) = -s;
		M(2,1) = s;
	    }
	}
    }

    if (!optimized)
    {
	const float mag = sqrtf (x * x + y * y + z * z);

	if (mag <= 1.0e-4)
	{
	    /* no rotation, leave mat as-is */
	    return;
	}

	x /= mag;
	y /= mag;
	z /= mag;


	/*
	 *     Arbitrary axis rotation matrix.
	 *
	 *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
	 *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
	 *  (which is about the X-axis), and the two composite transforms
	 *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
	 *  from the arbitrary axis to the X-axis then back.  They are
	 *  all elementary rotations.
	 *
	 *  Rz' is a rotation about the Z-axis, to bring the axis vector
	 *  into the x-z plane.  Then Ry' is applied, rotating about the
	 *  Y-axis to bring the axis vector parallel with the X-axis.  The
	 *  rotation about the X-axis is then performed.  Ry and Rz are
	 *  simply the respective inverse transforms to bring the arbitrary
	 *  axis back to it's original orientation.  The first transforms
	 *  Rz' and Ry' are considered inverses, since the data from the
	 *  arbitrary axis gives you info on how to get to it, not how
	 *  to get away from it, and an inverse must be applied.
	 *
	 *  The basic calculation used is to recognize that the arbitrary
	 *  axis vector (x, y, z), since it is of unit length, actually
	 *  represents the sines and cosines of the angles to rotate the
	 *  X-axis to the same orientation, with theta being the angle about
	 *  Z and phi the angle about Y (in the order described above)
	 *  as follows:
	 *
	 *  cos ( theta ) = x / sqrt ( 1 - z^2 )
	 *  sin ( theta ) = y / sqrt ( 1 - z^2 )
	 *
	 *  cos ( phi ) = sqrt ( 1 - z^2 )
	 *  sin ( phi ) = z
	 *
	 *  Note that cos ( phi ) can further be inserted to the above
	 *  formulas:
	 *
	 *  cos ( theta ) = x / cos ( phi )
	 *  sin ( theta ) = y / sin ( phi )
	 *
	 *  ...etc.  Because of those relations and the standard trigonometric
	 *  relations, it is pssible to reduce the transforms down to what
	 *  is used below.  It may be that any primary axis chosen will give the
	 *  same results (modulo a sign convention) using thie method.
	 *
	 *  Particularly nice is to notice that all divisions that might
	 *  have caused trouble when parallel to certain planes or
	 *  axis go away with care paid to reducing the expressions.
	 *  After checking, it does perform correctly under all cases, since
	 *  in all the cases of division where the denominator would have
	 *  been zero, the numerator would have been zero as well, giving
	 *  the expected result.
	 */

	xx = x * x;
	yy = y * y;
	zz = z * z;
	xy = x * y;
	yz = y * z;
	zx = z * x;
	xs = x * s;
	ys = y * s;
	zs = z * s;
	one_c = 1.0f - c;

	/* We already hold the identity-matrix so we can skip some statements */
	M(0,0) = (one_c * xx) + c;
	M(0,1) = (one_c * xy) - zs;
	M(0,2) = (one_c * zx) + ys;
/*    M(0,3) = 0.0F; */

	M(1,0) = (one_c * xy) + zs;
	M(1,1) = (one_c * yy) + c;
	M(1,2) = (one_c * yz) - xs;
/*    M(1,3) = 0.0F; */

	M(2,0) = (one_c * zx) - ys;
	M(2,1) = (one_c * yz) + xs;
	M(2,2) = (one_c * zz) + c;
/*    M(2,3) = 0.0F; */

/*
  M(3,0) = 0.0F;
  M(3,1) = 0.0F;
  M(3,2) = 0.0F;
  M(3,3) = 1.0F;
*/
    }
#undef M

    matmul4 (m, m, matrix);
}

void
GLMatrix::rotate (const float       angle,
		    const GLVector& vector)
{
    rotate (angle,
	    vector[GLVector::x],
	    vector[GLVector::y],
	    vector[GLVector::z]);
}

/**
 * Multiply a matrix with a general scaling matrix.
 *
 * \param matrix matrix.
 * \param x x axis scale factor.
 * \param y y axis scale factor.
 * \param z z axis scale factor.
 *
 * Multiplies in-place the elements of \p matrix by the scale factors.
 */
void
GLMatrix::scale (const float x,
		   const float y,
		   const float z)
{
    m[0] *= x; m[4] *= y; m[8]  *= z;
    m[1] *= x; m[5] *= y; m[9]  *= z;
    m[2] *= x; m[6] *= y; m[10] *= z;
    m[3] *= x; m[7] *= y; m[11] *= z;
}

void
GLMatrix::scale (const GLVector& vector)
{
    scale (vector[GLVector::x],
	   vector[GLVector::y],
	   vector[GLVector::z]);
}

/**
 * Multiply a matrix with a translation matrix.
 *
 * \param matrix matrix.
 * \param x translation vector x coordinate.
 * \param y translation vector y coordinate.
 * \param z translation vector z coordinate.
 *
 * Adds the translation coordinates to the elements of \p matrix in-place.
 */
void
GLMatrix::translate (const float x,
		       const float y,
		       const float z)
{
    m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
    m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
    m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
    m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
}

void
GLMatrix::translate (const GLVector& vector)
{
    translate (vector[GLVector::x],
	       vector[GLVector::y],
	       vector[GLVector::z]);
}

void
GLMatrix::toScreenSpace (const CompOutput *output,
			 float            z)
{
    translate (-0.5f, -0.5f, z);
    scale (1.0f / output->width (), -1.0f / output->height (), 1.0f);
    translate (-output->x1 (), -output->y2 (), 0.0f);
}

float&
GLMatrix::operator[] (unsigned int pos)
{
    assert (pos <= 15);
    return m[pos];
}